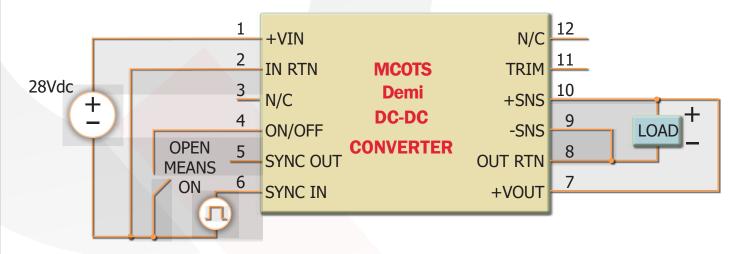

- MIL-STD-461 (C, D, E, F)
- DEF-STAN 61-5 (Part 6)/(5 or 6) for $V_{IN} > 16V$ (with MCOTS-F-28-T-HT)

Product # MCOTS-C-28-05S-DM Phone 1-888-567-9596 www.syngor.com


Doc.# 005-0006519 Rev. E 06/10/2020

• Full component traceability

Page 1

Typical Connection Diagram

Electrical Characteristics MCOTS-C-28-05S-DM ELECTRICAL CHARACTERISTICS

®

Tb = 25 °C, Vin = 28 Vdc, full load, free running (see Note 5) unless otherwise noted; full operating temperature range is -55 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Typ.	Max.	Units	Notes & Conditions
ABSOLUTE MAXIMUM RATINGS					
Input Voltage					
Non-Operating	-1		60	V	Continuous
Operating			40	V	Continuous
Operating Transient Protection			60	V	See Note 1
Isolation Voltage				•	
Input to Output			1000	V	
Input to Base-Plate			1000	V	
Output to Base-Plate			1000	V	
Operating Case Temperature	-55		1000	°C	Baseplate temperature
Storage Case Temperature	-65		135	°C	
Voltage at ON/OFF	-1.2		50	V	
INPUT CHARACTERISTICS	1.2	1	50	V	
Operating Input Voltage Range	16	28	40	V	
Input Under-Voltage Shutdown	10	20	10	v	See Note 3
Turn-On Voltage Threshold	14.75	15.50	16.00	V	
Turn-Off Voltage Threshold	14.75	14.75	15.50	V	
Shutdown Voltage Hysteresis	14.00	0.80	15.50	V	
		0.00		V	See Note 3
input Over-Voltage Shutdown	52.0	55.0	58.0	M	See Note 5
Turn-Off Voltage Threshold Turn-On Voltage Threshold				V	
5	50.5	53.5	56.5	V	
Shutdown Voltage Hysteresis		2.0	-		Tatamal values and Figure F
input Filter Component Values (L\C)		1.0\11.4] I		μH∖μF	Internal values; see Figure F
Maximum Input Current		75	3.9	A	Vin = 16V; Iout = 10A
No Load Input Current		75	125	mA	
Disabled Input Current		10	15	mA	Develuide 10011 - 10011 Figure 14
Input Terminal Current Ripple (pk-pk)		40	75	mA	Bandwidth = 100kHz – 10MHz; see Figure 14
DUTPUT CHARACTERISTICS	4.05			M	Veut at comes loo de
Dutput Voltage Set Point	4.95	5.00	5.05	V	Vout at sense leads
Dutput Voltage Regulation	0.4		0.4	mV	
Over Line	-0.4		0.4	%	
Over Load	-0.4		0.4	%	
Over Temperature	-100	F 00	100	mV	Over several line lead to the Olife
Fotal Output Voltage Range	4.90	5.00	5.10	V	Over sample, line, load, temperature & life
Dutput Voltage Ripple and Noise Peak to Peak		15	75	mV	Bandwidth = 10 MHz; CL= 11μ F
Operating Output Current Range	0		10	A	
Operating Output Power Range	0	10.5	50	W	
Dutput DC Current-Limit Inception	10.5	12.5	15	A	See Note 4
Back-Drive Current Limit while Enabled		3		A	
Back-Drive Current Limit while Disabled		10	5000	mA	
Maximum Output Capacitance			5000	μF	
Output Voltage Deviation Load Transient					See Note 6
For a Pos. Step Change in Load Current		-400		mV	
Settling Time		200		μs	
Response to Input Transient		200		mV	See Figure 12, see Note 7
Output Voltage Trim Range	-10		10	%	See Figure E
Output Over-Voltage Shutdown	5.6	6.6	7.1	V	
EFFICIENCY					
lout = 10 A (28 Vin)		87		%	
lout = 5 A (28 Vin)		89		%	

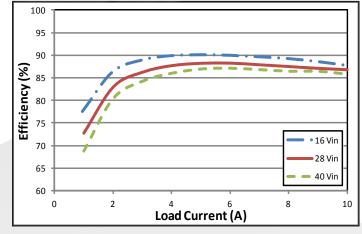
Product # MCOTS-C-28-05S-DM Phone 1-888-567-9596 www.synqor.com

MCOTS-C-28-05S-DM **Input: 16-40V Output: 5V** Current: 10A

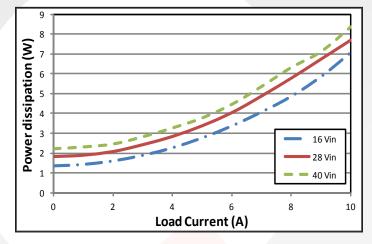
Electrical Characteristics MCOTS-C-28-05S-DM ELECTRICAL CHARACTERISTICS (Continued)

Tb = 25 °C, Vin = 28 Vdc, full load, free running (see Note 5) unless otherwise noted; full operating temperature range is -55 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

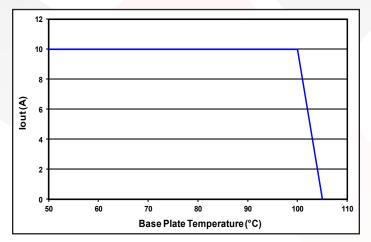
Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
SOLATION CHARACTERISTICS					
isolation Voltage (dielectric strength)					See Absolute Maximum Ratings
Isolation Resistance		100		MΩ	
Isolation Capacitance (input to output)		22		nF	
TEMPERATURE LIMITS FOR POWER DERATING CU	RVES				
Semiconductor Junction Temperature			125	°C	Package rated to 150 °C
Board Temperature			125	°C	UL rated max operating temp 130 °C
Transformer Temperature			125	°C	
Maximum Baseplate Temperature, Tb			100	°C	
FEATURE CHARACTERISTICS					
Switching Frequency (free running)		550		kHz	
Synchronization Input					
Frequency Range	500		700	kHz	
Logic Level High	2.0		5.5	V	
Logic Level Low	-0.5		0.8	V	
Duty Cycle	20		80	%	
Synchronization Output					
Pull Down Current	20			mA	VSYNC OUT = $0.8V$
Duty Cycle	40		60	%	Output connected to SYNC IN of other MCOTS DM unit
ON/OFF Control					
Off-State Voltage			0.8	V	
Module Off Pulldown Current	80			μA	Current drain required to ensure module is off
On-State Voltage	2			V	
Module On Pin Leakage Current			20	μA	Imax draw from pin allowed with module still on
Pull-Up Voltage	3.2	4.0	4.8	V	See Figure A
DYNAMIC CHARACTERISTICS					
Turn-On Transient					
Output Voltage Rise Time		6	10	ms	Vout = 0.5V to 4.5V; Full Resistive Load
Output Voltage Overshoot		0	2	%	Resistive load
Turn-On Delay, Rising Vin		5.5	8.0	ms	On/Off = 5V; see Notes 8 & 2
Turn-On Delay, Rising ON/OFF		3.0	6.0	ms	See Note 2
Restart Inhibit Time		100	150	ms	See Note 2
Short Circuit Start Time	12	14	20	ms	
RELIABILITY CHARACTERISTICS					
Calculated MTBF per MIL-HDBK-217F		4.03		106 Hrs.	Ground Benign, 70°C Tb
Calculated MTBF per MIL-HDBK-217F		0.83		10 ⁶ Hrs.	Ground Mobile, 70°C Tb

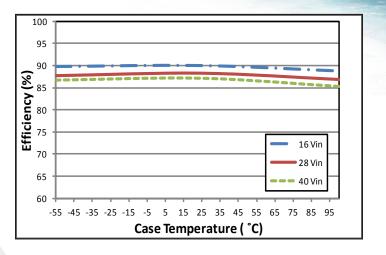

Electrical Characteristics Notes

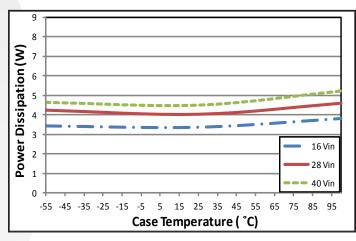
1. Converter will undergo input over-voltage shutdown.


- 2. After a disable or fault event, module is inhibited from restarting for 100ms. See Shut Down section of the Control Features description.
- 3. High or low state of input voltage must persist for about 200µs to be acted on by the shutdown circuitry.
- 4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value. See Current Limit discussion in Features Description section.
- 5. Operating the converter at a synchronization frequency above the free running frequency will cause the converter's efficiency to be slightly reduced and it may also cause a slight reduction in the maximum output current/power available.
- 6. Load current transition time \geq 10µs.
- 7. Line voltage transition time \geq 100µs.
- 8. Input voltage rise time $\leq 250 \mu s$.

MCOTS-C-28-05S-DM Input: 16-40V Output: 5V Current: 10A


Technical Charts


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.


Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

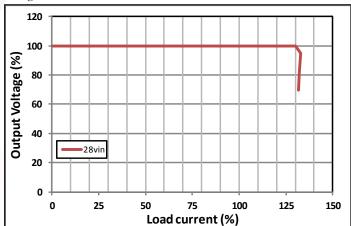

Figure 5: Maximum output current vs. base plate temperature (nominal input voltage.)

Figure 2: *Efficiency at nominal output voltage and 60% rated power vs. case temperature for minimum, nominal, and maximum input voltage.*

Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. case temperature for minimum, nominal, and maximum input voltage

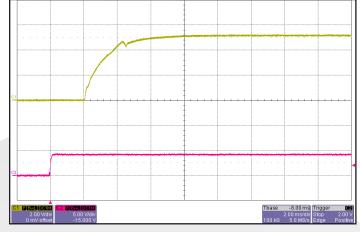
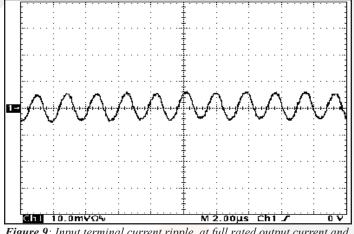
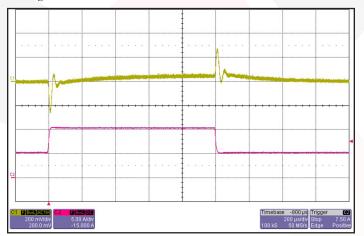
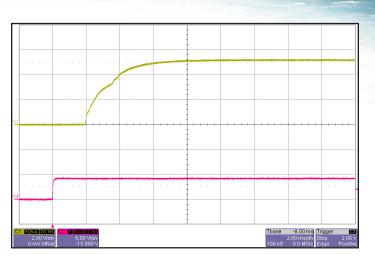


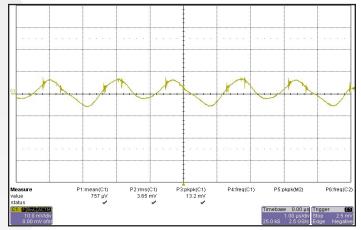
Figure 6: Output voltage vs. load current showing typical current limit curves. See Current limit section in application notes.


MCOTS-C-28-05S-DM Input: 16-40V Output: 5V

Current: 10A


Technical Charts


Figure 7: Turn-on transient at no load and zero output capacitance initiated by On/Off. Input voltage pre-applied. Ch 1: Vout (2V/div). Ch 2: On/Off (5V/div).


Figure 9: Input terminal current ripple, at full rated output current and nominal input voltage with SynQor MCOTS filter module(20mA/div.) See Figure 17.

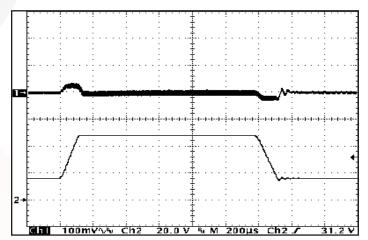
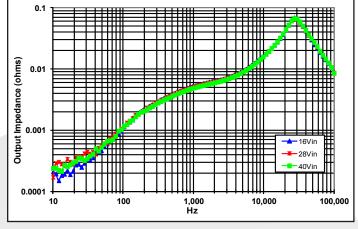

Figure 11: Output voltage response to step-change in load current 50%-100%-50% of Iout (max).No external load capacitance. Ch 1: Vout (200mV/div.) Ch 2: Iout (5A/div.)

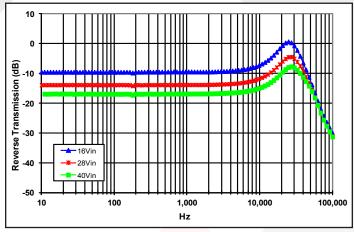
Figure 8: Turn-on transient at full resistive load and zero output capacitance initiated by On/Off. Input voltage pre-applied. Ch 1: Vout (2V/div). Ch 2: On/Off (5V/div).

Figure 10: Output voltage ripple, Vout, at nominal input voltage and full rated load current (10mV/div.)

Figure 12: Output voltage response to step-change in input voltage (16V - 50V - 16V) in 150µS. Ch 1: Vout (100mV/div). Ch 2: Vin (20V/ div).



MCOTS-C-28-05S-DM **Input: 16-40V Output:** 5V


100,000

Current: 10A

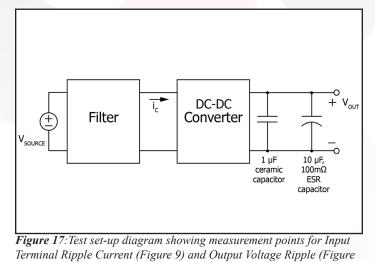
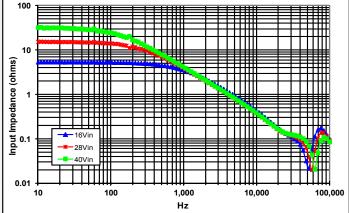

Technical Charts

Figure 13: Magnitude of incremental output impedance $(Z_{out} = v_{out}/i_{out})$ for minimum, nominal, and maximum input voltage at full rated power.

Figure 15: Magnitude of incremental reverse transmission ($RT = i_{in}/i_{out}$) for minimum, nominal, and maximum input voltage at full rated power.



Forward Transmission (dB) -70 -80 -90 -100 100 1,000 10,000 Hz **Figure 14**: Magnitude of incremental forward transmission ($FT = v_{out}$) v_{ij}) for minimum, nominal, and maximum input voltage at full rated power. 100

0 -10 -20

-30

-40 -50 -60

Figure 16: Magnitude of incremental input impedance $(Z_{in} = v_{in}/i_{in})$ for minimum, nominal, and maximum input voltage at full rated power.

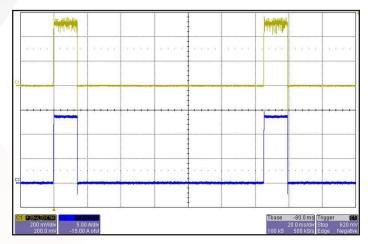
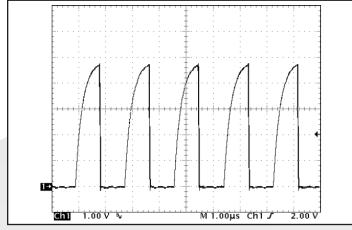



Figure 18: A short circuit across the output terminals. Ch 1: Vout (200mV/div). Ch 2: Iout (5A/div).

10).

Technical Charts

Figure 19:SYNC OUT vs. time, driving Sync IN of a second SynQor converter.

Application Section BASIC OPERATION AND FEATURES

The MCOTS DC-DC converter uses a two-stage power conversion topology. The first, or regulation, stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second, or isolation, stage uses transformers to provide the functions of input/output isolation and voltage transformation to achieve the output voltage required.

Both the regulation and the isolation stages switch at a fixed frequency for predictable EMI performance. The isolation stage switches at one half the frequency of the regulation stage, but due to the push-pull nature of this stage it creates a ripple at double its switching frequency. As a result, both the input and the output of the converter have a fundamental ripple frequency of about 550 kHz in the free-running mode.

Rectification of the isolation stage's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low resistance, dissipate far less energy than would Schottky diodes. This is the primary reason why the MCOTS converters have such high efficiency, particularly at low output voltages.

Besides improving efficiency, the synchronous rectifiers permit operation down to zero load current. There is no longer a need for a minimum load, as is typical for converters that use diodes for rectification. The synchronous rectifiers actually permit a negative load current to flow back into the converter's output terminals if the load is a source of short or long term energy. The MCOTS converters employ a "back-drive current limit" to keep this negative output terminal current small.

There is a control circuit in the MCOTS converter that determines the conduction state of the power switches. It communicates across the isolation barrier through a magnetically coupled device. No opto-isolators are used.

An input under-voltage shutdown feature with hysteresis is provided, as well as an input over-voltage shutdown and an output overvoltage limit. There is also an output current limit that is nearly constant as the load impedance decreases (i.e., there is not foldback or fold-forward characteristic to the output current under this condition). When a load fault is removed, the output voltage rises exponentially to its nominal value without an overshoot. If a load fault pulls the output voltage below about 60% of nominal, the converter will shut down to attempt to clear the load fault. After a short delay it will try to auto-restart.

The MCOTS converter's control circuit does not implement an overtemperature shutdown.

The following sections describe the use and operation of additional control features provided by the MCOTS converter.

CONTROL FEATURES

Remote ON/OFF: The MCOTS converter has one on/off function pin, ON/OFF (pin 4), which is referenced with respect to the converter's input return (pin 2). It must have a logic high level for the converter to be enabled; a logic low inhibits the converter. The ON/OFF pin is internally pulled high so that an open connection will enable the converter. Figure A shows the equivalent circuit looking into the ON/OFF pin. It is TTL compatible and has hysteresis.

SHUT DOWN: The MCOTS converter will shut down in response to only five conditions: ON/OFF input low, VIN input below under-voltage shutdown threshold, VIN input above over-voltage

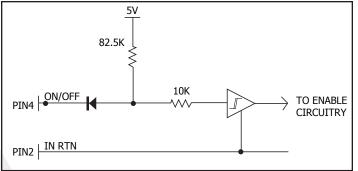


Figure A: Circuit diagram shown for reference only, actual circuit components may differ from values shown for equivalent circuit.

shutdown threshold, output voltage below the output undervoltage threshold, and output voltage above the output overvoltage threshold. Following any shutdown event, there is a startup inhibit delay which will prevent the converter from restarting for approximately 100ms. After the 100ms delay elapses, if the ON/ OFF inputs are high and the input voltage is within the operating range, the converter will restart. If the VIN input is brought down to nearly 0V and back into the operating range, there is no startup inhibit, and the output voltage will rise according to the "Turn-On Delay, Rising Vin" specification.

REMOTE SENSE: The purpose of the remote sense pins is to correct for the voltage drop along the conductors that connect the converter's output to the load. To achieve this goal, a separate conductor should be used to connect the +SENSE pin (pin 10) directly to the positive terminal of the load, as shown in the connection diagram on Page 2. Similarly, the –SENSE pin (pin 9) should be connected through a separate conductor to the return terminal of the load.

NOTE: Even if remote sensing of the load voltage is not desired, the +SENSE and the -SENSE pins must be connected to +Vout (pin 7) and OUTPUT RETURN (pin 8), respectively, to get proper regulation of the converter's output. If they are left open, the converter will have an output voltage that is approximately 200mV higher than its specified value.

Inside the converter, +SENSE is connected to +Vout with a 100 Ω resistor and –SENSE is connected to OUTPUT RETURN with a 10 Ω resistor.

It is also important to note that when remote sense is used, the voltage across the converter's output terminals (pins 7 and 8) will be higher than the converter's nominal output voltage due to resistive drops along the connecting wires. This higher voltage at the terminals produces a greater voltage stress on the converter's internal components and may cause the converter to fail to deliver

MCOTS-C-28-05S-DM Input: 16-40V **Output: 5V**

Current: 10A

Application Section

the desired output voltage at the low end of the input voltage range at the higher end of the load current and temperature range. Please consult the factory for details.

SYNCHRONIZATION: The MCOTS converter's switching frequency can be synchronized to an external frequency source that is in the 500 kHz to 700 kHz range. A pulse train at the desired frequency should be applied to the SYNC IN pin (pin 6) with respect to the INPUT RETURN (pin 2). This pulse train should have a duty cycle in the 20% to 80% range. Its low value should be below 0.8V to be guaranteed to be interpreted as a logic low, and its high value should be above 2.0V to be guaranteed to be interpreted as a logic high. The transition time between the two states should be less than 300ns.

If the MCOTS converter is not to be synchronized, the SYNC IN pin should be left open circuit. The converter will then operate in its free-running mode at a frequency of approximately 550 kHz.

If, due to a fault, the SYNC IN pin is held in either a logic low or logic high state continuously, or the SYNC IN frequency is outside the 500-700 kHz range, the MCOTS converter will revert to its freerunning frequency.

The MCOTS converter also has a SYNC OUT pin (pin 5). This output can be used to drive the SYNC IN pins of as many as ten (10) other MCOTS converters. The pulse train coming out of SYNC OUT has a duty cycle of 50% and a frequency that matches the switching frequency of the converter with which it is associated. This frequency is either the free-running frequency if there is no valid synchronization signal at the SYNC IN pin, or the synchronization frequency if there is.

Figure B shows the equivalent circuit looking into the SYNC IN pin and Figure C shows the equivalent circuit looking into the SYNC OUT pin.

OUTPUT VOLTAGE TRIM: the TRIM pin (pin 11) can adjust the MCOTS converter's output voltage $\pm 10\%$ around its nominal value.

To trim the output voltage above its nominal value, connect an external resistor from the TRIM pin to the -SENSE pin as shown in Figure D. The value of this trim up resistor should be chosen according to the following equation or from Figure E:

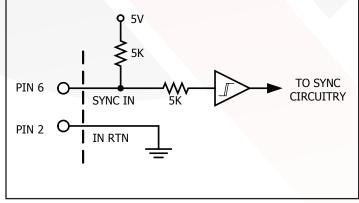


Figure B: Equivalent circuit looking into the SYNC IN pin with respect to the IN RTN (input return) pin.

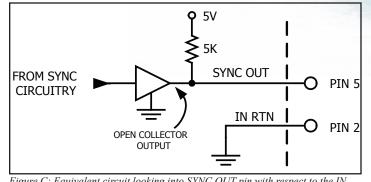


Figure C: Equivalent circuit looking into SYNC OUT pin with respect to the IN RTN (input return) pin.

Rtrim up(
$$\Omega$$
) = $\frac{6000\Omega * \text{Vnom}}{\text{Vout - Vnom}}$ - 30000 Ω

where:

Vnom = the converter's nominal output voltage, Vout = the desired output voltage (greater than Vnom), and

Rtrim up is in Ohms.

As the output voltage is trimmed up, it produces a greater voltage stress on the converter's internal components and may cause the converter to fail to deliver the desired output voltage at the low end of the input voltage range at the higher end of the load current and temperature range. Please consult the factory for details. To trim the output voltage below its nominal value, connect an external resistor between the TRIM pin and the +SENSE pin. The value of this trim down resistor should be chosen according to the following equation or from Figure E:

$$Rtrim down(\Omega) = \frac{15100\Omega * Vout - 6000\Omega * Vnom}{Vnom - Vout} - 30000\Omega$$

where:

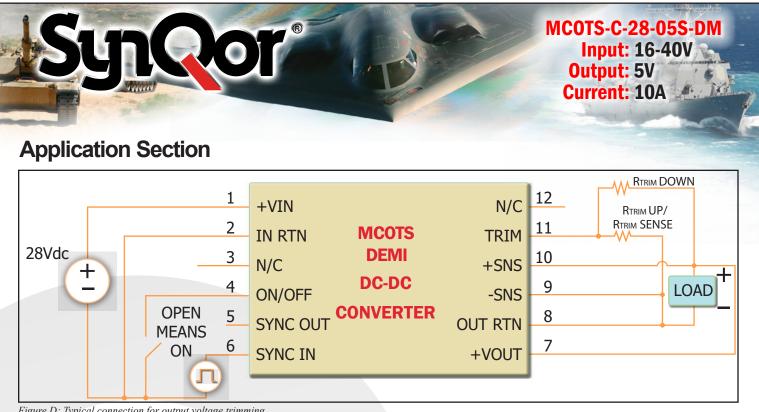
Vnom = the converter's nominal output voltage, Vout = the desired output voltage (less than Vnom). and Rtrim down is in Ohms.

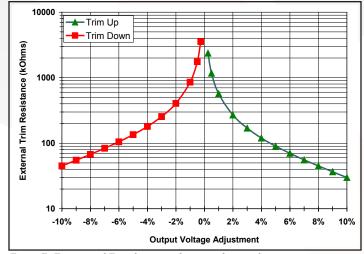
INPUT UNDER-VOLTAGE SHUTDOWN: The MCOTS converter has an under-voltage shutdown feature that ensures the converter will be off if the input voltage is too low. The input voltage turnon threshold is higher than the turn-off threshold. In addition, the MCOTS converter will not respond to a state of the input voltage unless it has remained in that state for more than about 200µs. This hysteresis and the delay ensure proper operation when the source impedance is high or in a noisy environment.

INPUT OVER-VOLTAGE SHUTDOWN: The MCOTS converter also has an over-voltage feature that ensures the converter will be off if the input voltage is too high. It also has a hysteresis and time delay to ensure proper operation.

OUTPUT OVER-VOLTAGE SHUTDOWN: The MCOTS converter will shut down if the voltage at its power output pins ever exceeds

Product # MCOTS-C-28-05S-DM Phone 1-888-567-9596




Figure D: Typical connection for output voltage trimming.

about 130% of the nominal value. The shutdown threshold does not change with output trim or sense drops; excessive trim-up or output wiring drops may cause an output over-voltage shutdown event. After a startup inhibit delay, the converter will attempt to restart.

OUTPUT UNDER-VOLTAGE SHUTDOWN: The MCOTS converter will also shut down if the voltage at its power output pins ever dips below 60% of the nominal value for more than a few milliseconds. Output voltage reduction due to output current overload (current limit) is the most common trigger for this shutdown. The shutdown threshold does not change with output trim but at only 10%, trimdown should not trigger this event. After a startup inhibit delay, the converter will attempt to restart. This shutdown is disabled during startup.

BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETs as synchronous rectifiers are capable of drawing a negative current from the load if the load is a source of short- or long-term energy. This negative current is referred to as a "back-drive current".

Conditions where back-drive current might occur include paralleled converters that do not employ current sharing. It can also occur

when converters having different output voltages are connected together through either explicit or parasitic diodes that, while normally off, become conductive during startup or shutdown. Finally, some loads, such as motors, can return energy to their power rail. Even a load capacitor is a source of back-drive energy for some period of time during a shutdown transient.

To avoid any problems that might arise due to back-drive current, the MCOTS converters limit the negative current that the converter can draw from its output terminals. The threshold for this backdrive current limit is placed sufficiently below zero so that the converter may operate properly down to zero load, but its absolute value (see the Electrical Characteristics page) is small compared to the converter's rated output current.

CURRENT LIMIT: In the event of excess load, the MCOTS converter will guickly reduce its output voltage to keep the load current within safe limits (see Figure 6). If the overload persists for more than 14 milliseconds, the converter will shut off, wait a restart delay, and then automatically attempt to re-start. The timeout is internally implemented with an integrator: counting up whenever current limit is active, and counting down at 1/5th the rate whenever current limit becomes inactive. In this way a series of short-duration overloads will not cause the converter to shut down, while it will shut down in response to sustained overloads.

INPUT SYSTEM INSTABILITY: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.

THERMAL CONSIDERATIONS: The maximum operating baseplate temperature, TB, is 100°C. Refer to the thermal derating curve, Figure 5, to see the available output current at baseplate temperatures below 100°C.

A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is only necessary to

Figure E: Trim up and Trim down as a function of external trim resistance.

Application Section

determine the thermal resistance, RTHBA, of the chosen heatsink between the base-plate and the ambient air for a given airflow rate. This information is usually available from the heatsink vendor. The following formula can then be used to determine the maximum power the converter can dissipate for a given thermal condition:

$$P_{diss}^{max} = \frac{TB - TA}{RTHBA}$$

This value of power dissipation can then be used in conjunction with the data shown in Figure 3 to determine the maximum load current (and power) that the converter can deliver in the given thermal condition. **INPUT FILTERING AND EXTERNAL CAPACITANCE:** Figure F provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of the converter's external electrolytic input capacitor. More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website.

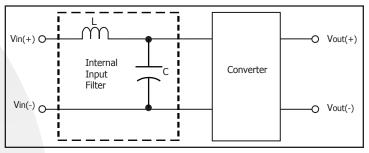
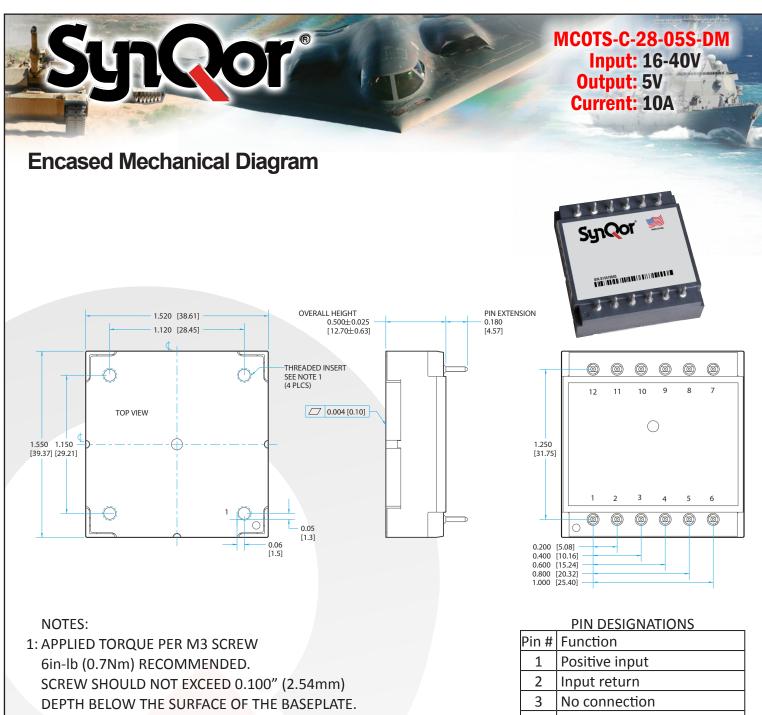
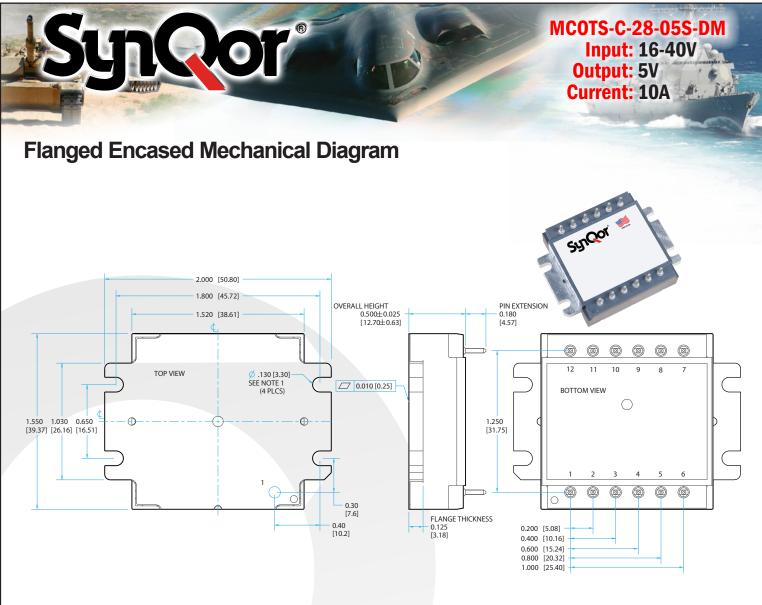



Figure F: Internal Input Filter Diagram.

Page 12


- 2: BASEPLATE FLATNESS TOLERANCE IS 0.004" (.10mm) TIR FOR SURFACE.
- 3: PINS 1-12 ARE .040" (1.02mm) DIA, WITH 0.080" (2.03mm) DIA. STANDOFF
- 4: ALL PINS: MATERIAL: COPPER ALLOY FINISH: MATTE TIN OVER NICKEL PLATE
- 5: WEIGHT: 1.97 oz. (56g)
- 6: ALL DIMENSIONS IN INCHES(mm) TOLERANCES: X.XXIN +/-0.02 (X.Xmm +/-0.5mm) X.XXXIN +/-0.010 (X.XXmm +/-0.25mm)

- On/Off 4
- 5 Sync output
- Sync input 6
- 7 Positive output
- 8 Output return
- 9 - Sense
- 10 + Sense
- Trim
- 11

No connection 12

Pin Designation Notes:

1: Pin out differs from other Mil-COTS products.

NOTES:

- 1: APPLIED TORQUE PER M3 OR 4-40 SCREW 6in-lb (0.7Nm) RECOMMENDED.
- 2: BASEPLATE FLATNESS TOLERANCE IS 0.010" (.25mm) TIR FOR SURFACE.
- 3: PINS 1-12 ARE .040" (1.02mm) DIA, WITH 0.080" (2.03mm) DIA. STANDOFF
- 4: ALL PINS: MATERIAL: COPPER ALLOY FINISH: MATTE TIN OVER NICKEL PLATE
- 5: WEIGHT: 2.08 oz. (59g) ALL DIMENSIONS IN INCHES(mm)
- 6: TOLERANCES: X.XXIN +/-0.02 (X.Xmm +/-0.5mm) X.XXXIN +/-0.010 (X.XXmm +/-0.25mm)

PIN DESIGNATIONS					
in #	Function				
1	Positive input				
2	Input return				
2	No connection				

- No connection 3
- On/Off 4
- 5 Sync output
- Sync input 6
- Positive output 7
- 8 Output return
- 9 - Sense
- 10 + Sense
- 11 Trim

12 No connection

Pin Designation Notes:

1: Pin out differs from other Mil-COTS products.

MCOTS-C-28-05S-DM Input: 16-40V **Output: 5V** Current: 10A

Qualifications & Screening

MII-COTS Qualification						
Test Name	Details	# Tested (# Failed)	Consistent with MIL-STD-883F Method			
Life Testing	Visual, mechanical and electrical testing before, during and after 1000 hour burn-in @ full load	15 (0)	Method 1005.8			
Shock- Vibration	Visual, mechanical and electrical testing before, during and after shock and vibration tests	5 (0)	MIL-STD-202, Methods 201A & 213B			
Humidity	+85 °C, 95% RH, 1000 hours, 2 minutes on / 6 hours off	8 (0)	Method 1004.7			
Temperature Cycling	500 cycles of -55 °C to +100 °C (30 minute dwell at each temperature)	10 (0)	Method 1010.8, Condition A			
Solderability	15 pins	15 (0)	Method 2003			
DMT	-65 $^{\circ}\text{C}$ to +110 $^{\circ}\text{C}$ across full line and load specifications in 5 $^{\circ}\text{C}$ steps	7 (0)				
Altitude	70,000 feet (21 km), see Note	2 (0)				

ALL COTE Qualification

R

Note: A conductive cooling design is generally needed for high altitude applications because of naturally poor convective cooling at rare atmospheres.

Mil-COTS Converter and Filter Screening

Screening	Process Description	S-Grade	M-Grade
Baseplate Operating Temperature		-55 °C to +100 °C	-55 °C to +100 °C
Storage Temperature		-65 °C to +135 °C	-65 °C to +135 °C
Pre-Cap Inspection	IPC-A-610, Class III	•	•
Temperature Cycling	MIL-STD-883F, Method 1010, Condition B, 10 Cycles		•
Burn-In	100 °C Baseplate	12 Hours	96 Hours
Final Electrical Test 100%		25 °C	-55 °C, +25 °C, +100 °C
Final Visual Inspection MIL-STD-883F, Method 2009		•	•

Mil-COTS MIL-STD-810G Qualification Testing

MIL-STD-810G Test	Method	Description				
Fungus	508.6	Table 508.6-I				
Altitude	500.5 - Procedure I	Storage: 70,000 ft / 2 hr duration				
Altitude	500.5 - Procedure II	Operating: 70,000 ft / 2 hr duration; Ambient Temperature				
Rapid Decompression	500.5 - Procedure III	Storage: 8,000 ft to 40,000 ft				
Acceleration	513.6 - Procedure II	Operating: 15 g				
Salt Fog	509.5	Storage				
High Tomporature	501.5 - Procedure I	Storage: 135 °C / 3 hrs				
High Temperature	501.5 - Procedure II	Operating: 100 °C / 3 hrs				
	502.5 - Procedure I	Storage: -65 °C / 4 hrs				
Low Temperature	502.5 - Procedure II	Operating: -55 °C / 3 hrs				
Temperature Shock503.5 - Procedure I - C		Storage: -65 °C to 135 °C; 12 cycles				
Rain	506.5 - Procedure I	Wind Blown Rain				
Immersion	512.5 - Procedure I	Non-Operating				
Humidity	507.5 - Procedure II	Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp - humidity cycle, 15 cycles)				
Random Vibration	514.6 - Procedure I	10 - 2000 Hz, PSD level of 1.5 g^2/Hz (54.6 g_{rms}), duration = 1 hr/axis				
Shock	516.6 - Procedure I	20 g peak, 11 ms, Functional Shock (Operating no load) (saw tooth)				
SHOCK	516.6 - Procedure VI	Bench Handling Shock				
Sinusoidal vibration	514.6 - Category 14	Rotary wing aircraft - helicopter, 4 hrs/axis, 20 g (sine sweep from 10 - 500 Hz)				
Sand and Dust	510.5 - Procedure I	Blowing Dust				
Sanu allu Dust	510.5 - Procedure II	Blowing Sand				

Ordering Information

Part Numbering Scheme							
Family	Product	Input Voltage	Output Voltage	Package Size	Heatsink Option	Screening Level	Options
MCOTS	C: Converter	28: 16-40V 28E: 16-70V	 3R3S: 3.3V Single 05S: 5.0V Single 12S: 12V Single 15S: 15V Single 28S: 28V Single 05D: 5.0V Dual 12D: 12V Dual 15D: 15V Dual 	DM: Demi Mega	N: Normal Threaded F: Flanged	S: S-Grade M: M-Grade	[]: Standard Feature

Ordering Information / Part Numbering

Example: MCOTS-C-28-05S-DM-N-S Not all combinations make valid part numbers, please contact SynQor for availability.

Application Notes

A variety of application notes and technical white papers can be downloaded in pdf format from our website.

STANDARDS COMPLIANCE Parameter

STANDARDS COMPLIANCE				
UL 60950-1	Basic Insulation			
CAN/CSA C22.2 No. 60950-1				
EN 60950-1				

Notes & Conditions

Note: An external input fuse must always be used to meet these safety requirements.

Contact SynQor for official safety certificates on new releases or download from the SynQor website.

PATENTS

Contact SynQor for further information and to order:

Phone:	978-849-0600
Toll Free:	888-567-9596
Fax:	978-849-0602
E-mail:	power@synqor.com
Web:	www.synqor.com
Address:	155 Swanson Road
	Boxborough, MA 01719
	USA

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

6,545,890 6,894,468 6,896,526 6,927,987 7,050,309 7,085,146 7,119,524 7,765,687 7,787,261 8,149,597 8,644,027

WARRANTY

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.